sig
module St : Solver_types.S
exception Insuficient_hyps
type atom = St.atom
type lemma = St.proof
type clause = St.clause
type proof
and proof_node = {
conclusion : Res_intf.S.clause;
step : Res_intf.S.step;
}
and step =
Hypothesis
| Assumption
| Lemma of Res_intf.S.lemma
| Duplicate of Res_intf.S.proof * Res_intf.S.atom list
| Resolution of Res_intf.S.proof * Res_intf.S.proof * Res_intf.S.atom
val to_list : Res_intf.S.clause -> Res_intf.S.atom list
val merge :
Res_intf.S.atom list -> Res_intf.S.atom list -> Res_intf.S.atom list
val resolve :
Res_intf.S.atom list -> Res_intf.S.atom list * Res_intf.S.atom list
val prove : Res_intf.S.clause -> Res_intf.S.proof
val prove_unsat : Res_intf.S.clause -> Res_intf.S.proof
val prove_atom : Res_intf.S.atom -> Res_intf.S.proof option
val parents : Res_intf.S.step -> Res_intf.S.proof list
val is_leaf : Res_intf.S.step -> bool
val expl : Res_intf.S.step -> string
val expand : Res_intf.S.proof -> Res_intf.S.proof_node
val fold :
('a -> Res_intf.S.proof_node -> 'a) -> 'a -> Res_intf.S.proof -> 'a
val unsat_core : Res_intf.S.proof -> Res_intf.S.clause list
val check : Res_intf.S.proof -> unit
val print_clause : Format.formatter -> Res_intf.S.clause -> unit
module H :
sig
type key = clause
type 'a t
val create : int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace : (key -> 'a -> 'a option) -> 'a t -> unit
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length : 'a t -> int
val stats : 'a t -> Hashtbl.statistics
end
end