sig
module St : Solver_types.S
exception Insuficient_hyps
type atom = St.atom
type clause = St.clause
type lemma = St.proof
type proof
and proof_node = {
conclusion : Res_intf.S.clause;
step : Res_intf.S.step;
}
and step =
Hypothesis
| Assumption
| Lemma of Res_intf.S.lemma
| Resolution of Res_intf.S.proof * Res_intf.S.proof * Res_intf.S.atom
val to_list : Res_intf.S.clause -> Res_intf.S.atom list
val merge :
Res_intf.S.atom list -> Res_intf.S.atom list -> Res_intf.S.atom list
val resolve :
Res_intf.S.atom list -> Res_intf.S.atom list * Res_intf.S.atom list
val prove : Res_intf.S.clause -> Res_intf.S.proof
val prove_unsat : Res_intf.S.clause -> Res_intf.S.proof
val prove_atom : Res_intf.S.atom -> Res_intf.S.proof option
val expand : Res_intf.S.proof -> Res_intf.S.proof_node
val fold :
('a -> Res_intf.S.proof_node -> 'a) -> 'a -> Res_intf.S.proof -> 'a
val unsat_core : Res_intf.S.proof -> Res_intf.S.clause list
val check : Res_intf.S.proof -> unit
val print_clause : Format.formatter -> Res_intf.S.clause -> unit
end